
Robocycle
Arthur Lovekin
08-16-2024

Introduction
Let me paint you a picture of what I want the future of transportation to look like:

I'm at school and want to get to the soccer field two miles away. I open up an uber-like app and
hail an autonomous bicycle, which promptly arrives at my location in only a few minutes. Once I
get on, I am fully in control. Autonomous collaborative balancing is not something I need in my
life. But as soon as I arrive at the field, I hop off and the bike goes off to the next rider. No clutter
on the sidewalk, time and money well-spent.

Why a bicycle? Well for one thing their lightweight frame and only two contact points with
the ground make bicycles the most efficient ground vehicle that can successfully navigate a city.
They are able to move as quickly as a car in an urban setting, but their lower profile makes them
much more nimble and less dangerous in the case of a collision. Humans are also able to ride
them safely and intuitively, which opens new opportunities unavailable to other small robot
delivery vehicles. In short, autonomous bicycles fit in the perfect niche of efficiency, safety,
speed, and human-friendliness that make them highly desirable in a community.
Use Cases:

● Very cool personal bicycle
● Convenient, clutter-free bike-share programs (with all the advantages of autonomous

vehicles)
● Faster, more efficient robot delivery services (better than Starship or Kiwibots)
● City-scale inspections/mapping/security



● For academics in robotics, the fact that this vehicle is non-trivial (harder than a cartpole)
but still analytically approachable (not as bad as a humanoid) make it an excellent
platform to test control algorithms both in hardware and in simulation.

Now you may be thinking, I like this idea, but wouldn't the bicycle just fall over and get
stuck? That is certainly the primary limitation of a normal bicycle, but not so with this design! By
putting a joint roughly coaxial with the where the bottom-tube would normally be, this bike is
able to passively rest in a half-upright position (you kind of have to see it to believe it). With a
good controller, it can swivel into the upright position, and once it is moving balance is easily
obtained through steering, as a human would do. Notably using the joints this way is entirely
novel as far as I'm aware. Existing autonomous bikes rely on flywheels (heavy and clunky),
and/or do not include a mechanism to stand up from a fallen down position.

With all this in mind, my goals for this project are to design a bike that can (1)
automatically right itself from any position on the ground, and (2) drive autonomously (without
person onboard), so that riders can summon it and it can do deliveries. The primary challenges
are to design hardware that is physically capable of righting itself, creating a balancing
controller, and finally building a perception, planning, and control stack that can effectively
navigate autonomously. As of August 8, 2024 I've completed a physics (pybullet) simulation and
a small physical model that prove the concept, but have yet to build the larger system.

Previous work
Overall, it seems like that bicycles are an understudied area, probably because the financial
reward to effort ratio is very low. Furthermore, no one has tackled the problem that bikes in their
fallen position are unable to get up. That being said, here are some very helpful resources I’ve
found that cover the bicycle dynamics and other autonomous bicycle attempts.

Bicycle Dynamics: There seems to be a singular great survey paper of bicycle dynamics from
TU Delft Bicycle Dynamics (tudelft.nl) (Meijaard et.al. 2007) Linearized dynamics equations for
the balance and steer of a bicycle: a benchmark and review

Two-wheeled balancing system:
Ascento [2005.11435] Ascento: A Two-Wheeled Jumping Robot (arxiv.org) This is Ascento Pro
(youtube.com)

Revolutionary design from Google ;) : Introducing the self-driving bicycle in the Netherlands
(youtube.com)

Autonomous Bicycle using Flywheel: Self Driving Bicycle That Can Run Without The Need For
Humans - YouTube

Yamaha Motoroid (same joint configuration, but training wheels keep it from lying down…)
ヤマハ発動機「MOTOROiD2（モトロイド ツー）」のパフォーマンス - YouTube
Self Balancing Autonomous Yamaha Motobot Motorcycle (youtube.com)

http://bicycle.tudelft.nl/schwab/Bicycle/
http://bicycle.tudelft.nl/schwab/Publications/06PA0459BicyclePaperv45.pdf
http://bicycle.tudelft.nl/schwab/Publications/06PA0459BicyclePaperv45.pdf
https://arxiv.org/abs/2005.11435
https://www.youtube.com/watch?v=Uxt2wTI0m5o
https://www.youtube.com/watch?v=Uxt2wTI0m5o
https://www.youtube.com/watch?v=LSZPNwZex9s
https://www.youtube.com/watch?v=LSZPNwZex9s
https://www.youtube.com/watch?v=2Z67NkvXIF4
https://www.youtube.com/watch?v=2Z67NkvXIF4
https://www.youtube.com/watch?v=dAt4xYBo_yQ
https://www.youtube.com/watch?v=InTJW1TeCLs


Autonomous bike with two wheels (not as cool/practical as my geometry but same large-scale
goal)
Overview ‹ The MIT Autonomous Bicycle Project — MIT Media Lab

Underactuated Robotics (Rus Tedrake MIT) has a lot of useful information on how I’d actually
control this thing.

Dynamics of a Rolling Disk The rolling disk | Rotations (berkeley.edu) is helpful for thinking
about wheel contact

Geometric derivation
The goal of this derivation is to arrive at an analytical model of the robocycle system that can
then be used by a controller to balance the bike through all stages of movement: stand-up and
riding. I’ll approach this by first writing the kinematic equations, which describe the geometric
structure (eg. link lengths and angles), and then writing the dynamics equations. For this
system, the largest challenge arises from dealing with the point-contact between the wheels and
the ground. In previous work (Meijaard et.al. 2007) they use a set of coordinates that assumes
the contact points are fixed. This is not an option for the robocycle as it stands up. However, all
is not lost!

As described in Chapter 18 of the MIT Underactuated Robotics textbook We begin by
calculating the kinematic equations. At the most abstract level, this system consists of four
angular joints – body, steering, and two wheel axes – and four links – front wheel, rear wheel,
body link, and steering link. We can impose some constraints so that these joints and links are
related in the way we want. Note that a variety of geometries with this joint configuration are
possible, including a normal bicycle, and also a vehicle where both wheels are steerable (this
may be interesting to pursue in the future!).

https://www.media.mit.edu/projects/AutonomousBicycleProject/overview/
https://underactuated.csail.mit.edu/index.html
https://rotations.berkeley.edu/the-rolling-disk/
http://bicycle.tudelft.nl/schwab/Publications/06PA0459BicyclePaperv45.pdf
https://underactuated.mit.edu/sysid.html


Figure 1: the purely geometric features include the link lengths (d1,d2,d3,d4), the wheel radii
(R1,R2), and the angle between the joint axes 𝛼. Each link also has an associated coordinate
system, where I’ve put the z-axes along joint axes and x-axes along the common-normal
between the wheel frames and body frames. This choice is somewhat arbitrary, but follows
conventions similar to the Denavit–Hartenberg rules. Dynamic parameters include the
ground-plane normal vector n, the gravity vector g, the center of mass, and the contact points
(P1, P2). Given a particular joint configuration and orientation of the robocycle with respect to the
ground plane, and assuming that the ground touches at least one wheel, P1 and P2 can be
found by taking the z vector for the particular wheel, and finding .𝑅𝑧 × (𝑧 × 𝑛)
Once these contact points are determined, the kinematic chain of the bicycle from wheel center
to wheel center can be calculated using trigonometry, assuming the link lengths and angles are
known. I haven’t written these out for the whole bike yet, but here’s one wheel:



With these kinematic calculations satisfied, the next step is to find the dynamics. Specifically, I
need the Center of Mass (COM) and moments of inertia of each link, and then need to do
conservation of momentum and energy or equivalently the method of Lagrange and assemble it
into one large Manipulator Equation. This is still a work in progress.

Alternative motor/battery and joint-configuration layouts.

Geometric insights
1. The mass distribution is critical! (this was the primary problem for V3). You need to make

sure that the center of mass is above the “support” – the line between the two points
where the wheels touch the ground – throughout the entire standing trajectory. In
practice, this means that the steering servo needs to be small because its weight is

https://underactuated.csail.mit.edu/multibody.html#section1
https://underactuated.csail.mit.edu/multibody.html#manipulator


always outside the support, and the rest of the components should be placed low to
bring the COM to a place that is comfortably in the low middle of the bike.

2. Larger wheels increase how much the rolling contact point can move, which means a
larger support. It also makes the relative size of the motors/batteries smaller so it is
easier to get the COM where you want. Too large though and the servos won’t be strong
enough and the rear wheel will spin too fast. Larger wheels also give a longer moment
arm and more inertia (see below).

3. A larger system with more inertia and longer moments will have slower dynamics and be
easier to control. This is analogous to how it is easier to balance a broom on your finger
than a pencil – the pencil just moves too fast to control well. This indicates that
controlling a full-size bike would be significantly easier than the small model, which is
practically impossible

4. The torque on the servo joint (especially the body servo) is large. A good design in
Design V4, which had plastic that could screw the servo horn and also wrapped around
to the bottom where it was attached with a screw. The hole was larger than the screw
and no bearing was needed for this model. Note that screw connections were better than
friction-fit connections to the servo horn (although the friction-fits in V3 worked).

Prototypes and learnings

V1 The CAD was finished but I never made it because I didn’t like the gears, the front mount
was ridiculous, it wasn’t clear how I’d connect to the microcontroller, and the AA batteries
weren’t mounted well and might have not had enough power.



V2 The wheel shape allowed it to passively (though delicately) balance in the upright position.
Bluetooth between the Pi and a Nintendo Switch controller. Primary issues: Raspberry Pi 5 was
too big physically and required too much power (would brown out after a while). The small servo
on the body joint wasn’t strong enough to stand the robot up (couldn’t tell if it was because of
the poor joint or because the servo wasn’t strong enough). Joints were hot-glued and flimsy.



V3 Smaller Controller (Adafruit Feather ESP32) could be mounted without tape, and
communicated with my computer over BLE, which in turn received inputs from a Logitech F710
controller. I upgraded to a 2S LiPo battery and the servos were very strong and the circuit
worked well. The primary problem was that the COM was way too high so the robot was unable
to stand up.

V4
Brought the COM to the middle of the bike by changing to a smaller steering servo and
generally pushing the body servo, rear servo, and battery lower. The front wheel is the same



size as V3 so that I could keep a reasonable (73 degree) angle between the ground and the
steering axis, but the rear wheel is larger in order to get a lower COM and a larger support area.

V4 was the first prototype that fulfilled my expectations of a “working” robocycle: it demonstrates
that the standing motion is passively stable and all of the electronics work. I was unable to get it
to actually balance in its fully upright position because the dynamics were too fast for me to
control the body/steering servos accurately enough over remote control.

Next steps
The first thing I need to do is develop and analytical model of the system by writing out the
kinematics and the dynamics (see above). It would be nice to visualize my model as a “stick
figure” in 3D, but matplotlib is suboptimal for making animations in 3D space. From there I
should be able to design a simple controller and prove its effectiveness in simulation. Note: A
different route would be to simply simulate the bike in Gazebo or Pybullet and then train an RL
agent to balance. However, the analytical model seems doable and more principled.

Once I have a controller working in sim, I should actually make a full-scale version of this thing! I
may need to source hydraulic actuators for the body servo, and the steering servo will also be
expensive (whether I use electronic or hydraulic). Then I need to buy a bike that I can cut up. It’s
not clear whether it’s better to buy a normal bike and strap on batteries/motors, or whether I can
get an ebike that does some of the work for me (in general the companies don’t make it easy to
access the motor controllers or add sensors etc to the battery circuit).

If I wanted to make another mini model, here are some parts that could make it cheaper and
smaller/cleaner:
Adafruit QtPy ESP32



BNO055 IMU for QtPy
Use a cheaper continuous rotation servo on the rear
Battery could be smaller than the current 2200mAh (I never got even close to running out of
battery)

Pybullet simulation of “standing up from the ground” (controlled manually using arrow keys)

Side Quest: General Grievous Wheel bike
In order to study the dynamics of rolling contact, a more simple system (at least, 2D) is a
hamster wheel, rocking chair, or General Grievous’ wheel bike. An interesting question to me is
that a rocking chair has a motion like a pendulum, so how can the rolling contact equations be
converted into a form that looks like a pendulum? Furthermore, what is the relationship between
the path traced by the COM and the path traced by the center of curvature, or the path of the



instantaneous contact point as the chair rocks? Solving these may give insights that are very
useful to the robocycle, and it would be cool to make a wheel-bike along the way.




